童鞋论文网专业提供代写本科论文、代写硕士论文、代写职称论文、代写毕业论文、论文发表等服务,上万成功案例,欢迎咨询。 网站地图  |  加入收藏  |  设为首页
童鞋论文网
热门搜索
行政 教育 营销 法律 经济 护理 心理 会计 文学 工商 计算机 旅游
站内搜索:
童鞋论文网
 当前位置:童鞋论文网 > 职称论文 > 文章正文
 
石墨烯基含氧酸盐储能材料的制备及应用
论文作者:童鞋论文网  论文来源:www.txlunwenw.com  发布时间:2019/10/18 14:20:59  

摘要:近年来,超级电容器由于其高的功率密度和能量密度,在电化学储能领域引起了极大的关注。而在各种超级电容器电极材料中,含氧酸盐复合物因为其快速可逆的氧化还原反应、高的比电容、低廉的成本等优点,逐渐成为人们研究的热点。但其依然存在导电率低、循环性差等缺点。本文研究将含氧酸盐与石墨烯(rGO)复合,将赝电容材料和双电层电容材料结合起来,得到的纳米复合电极材料具有高容量/高导电性,且制备工艺相对简单。主要研究内容如下:

(1) 采用水热法制备了NiMoO4/rGO复合电极材料。通过XRD、FTIR、TG、SEM、TEM等对其结构进行了表征,结果表明,NiMoO4纳米棒包覆着rGO片,并聚集成束(长度在0.5到10 μm之间)。电化学性能测试结果表明,与纯NiMoO4相比,NiMoO4/rGO5复合电极材料具有更高的比电容(在0.5 A·g-1时,比电容为1382.2 F·g-1)、更优异的导电性和更好的循环稳定性(1000次循环后80%的电容保持率)。NiMoO4/rGO优异的电化学性能是因为rGO的高导电率以及各组分之间的协同效应。对复合电极材料中石墨烯含量的优化结果显示,rGO含量为5%的NiMoO4/rGO5的电性能最优。与其他文献相比,本实验的制备方法操作简单,对实验设备要求低,便于操作。

(2) 采用水热煅烧法制备了Ni3(PO4)2/rGO复合电极材料。通过XRD、XPS、SEM、TEM、BET等对其结构进行了表征,结果表明,通过300 °C的煅烧(氮气保护),形成了具有高比表面积(198.72 m2·g-1)的Ni3(PO4)2/rGO (300 °C)复合电极材料,并具有孔径为2-10 nm的介孔结构。值得注意的是,Ni3(PO4)2/rGO (300 °C)中的Ni3(PO4)2纳米颗粒是无定形的,有更多的晶界和离子扩散通道,因此表现出更好的电化学性能。电化学性能测试结果表明,电流密度为0.5 A·g-1时,Ni3(PO4)2/rGO (300 °C)复合电极材料的比电容达到1726 F·g-1。另外,对煅烧温度进行了优化,结果显示300 °C煅烧得到的Ni3(PO4)2/rGO复合电极材料的比电容远高于600 °C和900 °C煅烧得到的复合电极材料。与其他文献相比,该电极材料表现出优异的比电容和倍率性能。

(3) 通过水热法制备了Bi2O2CO3/BiOCl/rGO多元含氧酸盐复合电极材料(rBB)。通过XRD、FTIR、Raman、BET、SEM、TEM等表征对其进行了结构分析,结果表明,纯BiOCl是单独的微孔片,与Bi2O2CO3复合后变成多孔蜂窝状的纳米片结构,复合rGO后,rBB呈现出直径大约2 μm的康乃馨样结构。电化学性能测试结果表明,将具有高导电性的rGO与Bi2O2CO3/BiOCl纳米材料复合后,由于各组分之间的协同效应,提高了该电极材料的比电容大小和循环性能。在1 A·g-1电流密度下,rBB的比电容为950 F·g-1,循环1000次后,比电容仍有85%,其性能远高于一元和二元电极材料。与其他文献相比,本实验用的溶剂选择的是水,比较环保,所选原材料成本也较低。

In recent years, supercapacitors haveattracted great attention in the field of electrochemical energy storage due totheir high power density and energy density. Among various supercapacitorelectrode materials, oxyacid complexes have gradually become a research hotspotbecause of their fast reversible redox reaction, high specific capacitance, andlow cost. In this paper, the nanocomposite electrode material obtainedcomplexing oxoacid salt with graphene (rGO) (combine pseudo-capacitance withelectrochemical double-layer capacitance material) has high capacity/highconductivity by a simple preparation process.The main research contents are asfollows:

(1) The NiMoO4/rGO composite electrodematerials were prepared by hydrothermal method. The structure was characterizedby XRD, FTIR, TG, SEM and TEM. The results show that the NiMoO4 nanorods arecoated with rGO sheets and aggregated into bundles (length between 0.5 and 10μm). Electrochemical performance test results show that NiMoO4/rGO5 compositeelectrode material has higher specific capacitance (specific capacitance at1382.2 F·g-1 at 0.5 A·g-1), better conductivity and better cycle Stability (80%capacitance retention after 1000 cycles) than the pure NiMoO4. The excellentelectrochemical performance of NiMoO4/rGO is due to the high conductivity ofrGO and the synergistic effect between the components. The optimization resultsof graphene content in composites show that the electrical properties ofNiMoO4/rGO5 are optimal when the rGO content is 5%. Compared with otherliteratures, this experimental method is simple, low in requirements and easyto operate.

(2) The Ni3(PO4)2/rGO composite electrodematerials were prepared by hydrothermal calcination. The structures wereanalyzed by XRD, XPS, SEM, TEM, and BET. The results show that Ni3(PO4)2/rGO(300 °C) composite electrode material with high specific surface area (198.72m2·g-1) is formed by calcination at 300 °C (nitrogen protection) and has a porediameter of 2 -10 nm mesoporous structure. It is worth noting that theNi3(PO4)2 nanoparticles in Ni3(PO4)2/rGO (300 °C) are amorphous. Some amorphousstructures have better electrochemical performance due to more grain boundariesand ion diffusion channels in the disordered structure. The electrochemicalperformance test results show that the specific capacitance of Ni3(PO4)2/rGO(300 °C) composite electrode material reaches 1726 F·g-1 when the currentdensity is 0.5 A·g-1. In addition, the calcination temperature was optimized.The results show that the specific capacitance of the Ni3(PO4)2/rGO compositeelectrode material calcined at 300 °C is much higher than that of the compositeobtained by calcination at 600 °C and 900 °C. Compared to other documents, theelectrode material exhibits the excellent specific capacitance and rateperformance.

(3) The Bi2O2CO3/BiOCl/rGO (rBB) polyoxoatecomposite electrode material was prepared by hydrothermal method. The structureanalysis was carried out by XRD, FTIR, Raman, BET, SEM, TEM. The results showthat pure BiOCl exists in a single microporous state, but after beingcompounded with Bi2O2CO3, it is transformed into a porous honeycomb nanosheetstate. Finally, after complexing with rGO, rBB exhibits a carnation-likestructure with a diameter of approximately 2 μm. Electrochemical performancetest results show that the specific capacitance and cycle stability of theelectrode material are greatly improved due to the unique structure andsynergistic effect between the components, when the high conductivity rGO iscombined with the Bi2O2CO3/BiOCl nanomaterials. At a current density of 1A·g-1, the specific capacitance of rBB is 950 F·g-1. After 1000 cycles, thespecific capacitance is still 85%, and its performance is much higher than thatof mono- and binary electrode materials.

关键词:含氧酸盐;石墨烯;复合电极材料;超级电容器

Oxyacid salt; Graphene; Composite electrodematerial; Supercapacitor

上一篇:甲氧基苯酚在过渡金属催化剂上加氢脱氧反应性能研究     下一篇:TiO2光催化剂的微结构设计及应用
 
论文客服 95702844
论文热线18796337551
本站网址 www.txlunwenw.com
郑重承诺 原创,包修改,包通过!
童鞋论文网真诚欢迎新老客户的光临与惠顾!
 
 热门文章
· 住宅建设用地使用权续期研究
· 用户锁定效应视角下的网易云音
· 众筹产品创新性对融资绩效的影
· 南京市城镇居民冷鲜肉认知度问
· 摩拜共享单车可持续盈利研究
· 催生地方政府隐性债务风险的原
· 社交媒体中不实信息转发主体心
· 基于网络平台的SPA模式研究——
· 基于游客感知的云台山景区微信
· 新媒体时代背景下乡村旅游企业
 
 推荐文章
· 广西地区农家乐经营模式研究
· 碳金融和绿色经济发展研究综述
· 信息经济学下的“考研占座热”
· 基于二手物品交易平台的可持续
· 论取消进口预包装食品标签备案
· 部编版小学语文文言文类文章编
· F模型下“嘉欣丝绸”财务风险研
· 基于4V理论的云南嘉华饼屋营销
· 论商业性小屏直播的主持互动策
· 新兴偶像经济发展现状及发展建
 
 相关文章
· 石墨烯/铜基复合材料的制备及组
· 一种具有温度响应智能表面的氧
· 功能化氧化石墨烯负载贵金属制
· 石墨烯复合材料的性能研究及其
· 石墨烯/环氧树脂防腐涂料研究
· 纳米混合金属氧化物/石墨烯复合
· 石墨烯基金属硫化物复合物的制
· 石墨烯基双金属(氢)氧化物/聚苯
· 石墨烯基尖晶石型金属氧化物复
· 论石墨烯增强镁合金塑性加工的

论文原创,准时交稿,包修改,包通过,八年信誉,品质保证
童鞋论文网提供代写本科论文,代写专科论文,代写毕业论文,代写职称论文,代写硕士论文,论文发表及查重服务
备案号:苏ICP备11011187号-1 苏公网安备32030502000117号
版权归童鞋论文网所有 禁止一切商用盗用